Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data

نویسندگان

  • Satoru Hayasaka
  • Paul J. Laurienti
چکیده

Small-world networks are a class of networks that exhibit efficient long-distance communication and tightly interconnected local neighborhoods. In recent years, functional and structural brain networks have been examined using network theory-based methods, and consistently shown to have small-world properties. Moreover, some voxel-based brain networks exhibited properties of scale-free networks, a class of networks with mega-hubs. However, there are considerable inconsistencies across studies in the methods used and the results observed, particularly between region-based and voxel-based brain networks. We constructed functional brain networks at multiple resolutions using the same resting-state fMRI data, and compared various network metrics, degree distribution, and localization of nodes of interest. It was found that the networks with higher resolutions exhibited the properties of small-world networks more prominently. It was also found that voxel-based networks were more robust against network fragmentation compared to region-based networks. Although the degree distributions of all networks followed an exponentially truncated power law rather than true power law, the higher the resolution, the closer the distribution was to a power law. The voxel-based analyses also enhanced visualization of the results in the 3D brain space. It was found that nodes with high connectivity tended have high efficiency, a co-localization of properties that was not as consistently observed in the region-based networks. Our results demonstrate benefits of constructing the brain network at the finest scale the experiment will permit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging

Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...

متن کامل

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

طبقه‌بندی بیماری پارکینسون بر مبنای شاخص‌های درون-ناحیه‌ای و بین-ناحیه‌ای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت

Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Consistency of Network Modules in Resting-State fMRI Connectome Data

At rest, spontaneous brain activity measured by fMRI is summarized by a number of distinct resting state networks (RSNs) following similar temporal time courses. Such networks have been consistently identified across subjects using spatial ICA (independent component analysis). Moreover, graph theory-based network analyses have also been applied to resting-state fMRI data, identifying similar RS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2010